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INTRODUCTION

The calyptraeid gastropod Crepidula fornicata has
become a major invasive species along European
Atlantic coasts, with a geographic range from Spain
to Norway (Blanchard 1997, Davis & Thompson
2000). Its proliferation has considerably impacted the
shallow, soft and mixed-bottom habitats in which it is
found (Le Pape et al. 2004, Arbach Leloup et al.
2008). The abundance of C. fornicata heavily modi-
fies the nature and the structure of the habitat
(through biodeposition production and shell accumu-
lation) to the advantage of this species (Ehrhold et al.

1998). Furthermore, it creates competition for food
and space with economically-important suspension-
feeders (oysters and scallops, e.g. Blanchard 1997,
Beninger et al. 2007, Decottignies et al. 2007a,b) and
disturbs both oyster farming and commercial bottom
fisheries (additional cleaning operations before com-
mercialisation of molluscs, drag clogging on produc-
tive epibenthic shellfish sites, e.g. Blanchard 1997,
2001, Soulas et al. 2000).

Along the Brittany coast of France, 60 yr after its
introduction, Crepidula fornicata populations consti-
tute a considerable, and increasing, biomass. High
densities have been reported in several bays, using
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different techniques (e.g. side-scan sonar, submarine
videos, quantitative samplings, mapping): 160 000 t
in Mont Saint-Michel Bay (mean density: 267 t km−2,
Blanchard & Ehrhold 1999); 250 000 t in Saint-Brieuc
(313 t km−2, Hamon & Blanchard 1994, Blanchard et
al. 2001); 128 000 t in Brest (826 t km−2, Chauvaud
1998); 51 000 t in Bourgneuf Bay (146 t km−2; Barillé &
Barillé 2003, Sauriau et al. 2006). Despite several
strategies applied to control its biomass (Blanchard &
Thomas 1998, Soulas et al. 2000), slipper limpet pro-
liferation appears to be continuing unabated (Sauriau
et al. 1998, Blanchard & Ehrhold 1999, Blanchard
2009, Valdizan et al. 2009). 

Proliferation of an invasive species depends at least
in part on its successful reproduction; it is therefore
important to investigate the reproductive dynamics
of Crepidula fornicata in relation to environmental
variables which most impact this process. Although
the complex reproductive dynamics of C. fornicata
has re cently been documented (Beninger et al.
2010a,b), information on the eventual changes to
such dynamics over recent years obviously requires
at least 2 recent data sets, separated by an apprecia-
ble time interval. In the present study, therefore, an
additional, previously unexploited data set from the
same population of the Bourgneuf Bay (France) in
2000−2001 was analyzed in the same manner as in
2006−2007 (Beninger et al. 2010a,b), providing 2 data
sets separated by a 6-yr time interval.

Warming of water temperature may increase the
success of invasive species by facilitating their geo-
graphic spread and by promoting more successful
reproduction, larval development, and juvenile
recruitment (Stachowicz et al. 2002, Thieltges et al.
2004, Diederich et al. 2005, Cognie et
al. 2006, Dutertre et al. 2010). A pro-
nounced positive effect of water
warming on the reproduction of
another invasive species, Crassostrea
gigas (feral oysters), has previously
been documented (Cognie et al.
2006, Dutertre et al. 2010) for
Bourgneuf Bay. It thus seems logical
to investigate the same possibility for
Crepi dula fornicata. We therefore
investigated the relationship be -
tween temperature and the repro-
ductive dynamics of a C. fornicata
population in Bourgneuf Bay, a mid-
latitudinal point in the European C.
fornicata distribution, at 2 chronolog-
ically-spaced points in recent time:
2000−2001 and 2006−2007.

MATERIALS AND METHODS

Specimen sampling, histological preparation and
reproductive dynamics analysis

Crepidula fornicata specimens were hand- collected
in the intertidal of Bourgneuf Bay (French Atlantic
coast, 46–47° N, 1–2° W; Fig. 1), a slipper limpet-
invaded ecosystem located south of the Loire estuary
(Barillé & Barillé 2003, Valdizan et al. 2009, Beninger
et al. 2010a,b). A minimum of 50 slipper limpets were
sampled once or twice per month from late June 2000
to late June 2001, and twice per month from late
March 2006 to September 2007. Stacks of ~4 to 5
adult individuals were selected in order to ensure
equal representation of males and females (the bot-
tom 2 generally female, the rest male in this protan-
dric species; only 2 transitional individuals were
observed, the sex switch apparently being very rapid
in C. fornicata). The topo logical and quantitative his-
tological protocol followed that of Beninger et al.
(2010a,b). Stereological methods were used to deter-
mine volume fractions of different tissue types in the
histological sections (Weibel et al. 1966, Briarty 1975,
Morvan & Ansell 1988, Pazos et al. 1996, Mayhew
2000, Beninger et al. 2001). For each section of the
ovary, stereological counts were performed on 3 hap-
hazardly-chosen areas using a 10× 10 point matrix
on the microscope screen at 100×, as described in
Dutertre et al. (2009). In females, 6 tissue categories
were counted: developing oocytes, mature oocytes,
oocytes undergoing atresia, lysed oocytes, unoccu-
pied tubule space, and inter-tubular space. Since
male gonad tissue is scarce, irregular and small in the

154

Fig. 1. Crepidula fornicata. Study area and sampling site of slipper limpet 
C. fornicata in Bourgneuf Bay
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large visceral mass (Gould 1917), counts were per-
formed using a 20 × 20 point matrix at 200× on 3 hap-
hazardly-chosen areas containing visible tu bules. In
males, 5 categories of gonad tissue were counted:
developing gametes, immature spermatozoa, ma -
ture spermatozoa, residual spermatozoa, un occupied
lumen, and inter-tubular space in males. In male and
female samples, for each of the 3 randomly-chosen
areas, 3 counts were performed and the means
were calculated (with 95% confidence intervals) and
plotted. 

Samples from December 2000 (males and females)
and from late June 2001 (females only) could not be
counted due to gamete leakage from tubules close to
the plane of biopsy (the only tubules visible at this
location in the gonad in these months). For each
 sample, the presence or absence of incubated egg
capsules (brooding) was noted and used to assist in
the interpretation of reproductive events.

Water temperature over the sampling periods,
historical water temperature and chlorophyll 

(chl) a data

The REPHY (REseau PHYtoplancton, www.ifremer.
fr/ lerlr/surveillance/rephy.htm) is a long-term survey
of French coastal waters conducted by the Institut
Français de Recherche pour l’Exploitation de la Mer
(IFREMER), since 1984. Bimonthly measurements of
temperature and chl a (µg l−1) were ex tracted from
the REPHY Quadrige database for the 2 sampling
periods in Bourgneuf Bay.

Water temperatures (WT) prior to 1984 were calcu-
lated between January 1970 and December 2007
using the following regression (Haure & Baud 1995):

WT  =  0.8703 × AT + 0.036TC − 0.0969 (1)

Atmospheric temperatures (AT) were obtained
from the Météo-France Climathèque database (Noir-
moutier Station; 47° 00’ 18” N, 2° 15’ 24” W), and tidal
coefficients (TC) using the Marées dans le Monde
v2.02 software. Chl a data for Bourgneuf Bay were
extracted from the REPHY Quadrige database, from
1996 to 2007. No chl a values were available prior to
1996.

Data analysis

SigmaStat 2.0 (Jandel Scientific) was used to check
the normality and homoscedasticity of data distribu-
tions and subsequent statistical analyses. Annual

means of temperature (T) and chl a were compared
between 2000−2001 and 2006−2007 by, respectively,
Student’s t-test (T [°C] data normally distributed and
homogeneous variances) and Mann- Whitney test
(chl a data non-normally distributed and heteroge-
neous variances). As stereological counts, historical
water temperatures and chl a data were non-nor-
mally distributed and characterized by heteroge-
neous variances; non-parametric (Kruskall-Wallis)
ANOVAs were performed. ANOVAs were all
 followed by multiple-comparison Tukey’s test to
detect significant differences in means (p < 0.05) of
gamete volume fractions between 2000−2001 and
2006−2007, and of temperature and chl a over time. A
non-parametric linear regression was used to detect
a possible relationship between water temperatures
and time since 1970. 

RESULTS

Gametogenic cycle stability of Crepidula fornicata,
2000−2001 versus 2006−2007

Males

The 2000−2001 male sexual cycle presents the
same general profile as previously described for
2006−2007 (Beninger et al. 2010a,b): (1) a period of
high spermatozoan production in spring−summer
(Fig. 2), characterized by the presence of all stages of
spermatogenesis from the basal syncytium to the
gonad tubule lumen; (2) a period of spermatozoan
atresia in autumn−winter (Fig. 2), characterised by
the presence of a large proportion of degenerating
gametes in the tubule lumen.

As observed in Beninger et al. (2010a,b) for
2006−2007, the mean percentage of developing
gametes (spermatocytes and immature spermato-
zoa) in 2000−2001 was significantly greater during
the high spermatozoan production periods than
during the period of atresia (Fig. 2; Kruskall-Wallis
test: F = 2.43, n = 14, df = 13, p < 0.001). Neverthe-
less, throughout the sampling interval, the develop-
ing gamete proportions were significantly lower for
2000−2001 compared to 2006−2007 (Fig. 2; F =
2.004, n = 27, df = 26. p < 0.001), with mean per-
centages (±95% CI) of 15.7% (±2.4) in 2000−2001,
and 26.1% (±2.2) in 2006−2007 (Fig. 2). Despite the
low spermatogenesis observed for 2000−2001, the
mature spermatozoa proportions inside the tubules
during spermatozoan production periods were
highly similar to those found for 2006−2007 (Fig. 2),
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with mean spermatozoan percentages (±95% CI) of
16.9% (±5.5) for 2000−2001 and 14.4% (±2.2) for
2006−2007.

Females

The 2000−2001 female sexual cycle presents the
same general profile as previously described for
2006−2007 (Beninger et al. 2010a,b): (1) a period of

oocyte atresia in spring−summer (Fig. 3), character-
ized by the presence of oocytes slowly degenerating
and sometimes totally lysed inside the tubules; (2) a
period of oocyte maturation in autumn−winter
(Fig. 3), characterized by the presence of large
mature oocytes filled with vitellin droplets in the
gonad tubules.

Beninger et al. (2010a,b) observed that female
gamete production followed a clear annual cycle in
2006−2007, with developing oocyte percentages

Fig. 2. Crepidula fornicata. Stereological results for C. fornicata testis. Volume fractions of mature spermatozoa, developing
gametes (spermatocytes and immature spermatozoa) and degenerating spermatozoa in the testis, June 2000−2001 (1−2 sam-
ples mo−1), and June 2006−2007 (2 samples mo−1), means ± 95% CI. Dotted lines: common phases of reproductive cycle in (A)
2000−2001 and (B) 2006−2007. Data unavailable in December 2000 due to gamete leakage from tubules close to the plane of 

biopsy (the only tubules visible at this location in the gonad in these months). Sample sizes: above each CI
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(mean ± 95% CI) significantly greater during brood-
ing periods (13.5 ± 2%) than during the non-brood-
ing period (10.2 ± 2.6%) (Fig. 3; F = 2.96, n = 13, df =

12, p < 0.001). In contrast, the percentages of devel-
oping oocytes for 2000−2001 were much lower, with
mean developing oocyte percentages as little as 4
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Fig. 3. Crepidula fornicata. Stereological results for C. fornicata ovary. Volume fractions of mature oocytes, developing
oocytes, atresic oocytes and lysed oocytes in the ovary, (A) June 2000−2001 (1 or 2 samples mo−1) and (B) June 2006−2007
(2 samples mo−1), means ± 95% CI. Dotted lines: common phases of the reproductive cycle in 2000−2001 and 2006−2007. Data
unavailable in December 2000 and in late June 2001 (only for females) due to gamete leakage from tubules close to the plane
of biopsy (the only tubules visible at this location in the gonad in these months). Sample sizes: above each CI. Periods of brood-
ing for 2000−2001 and 2006−2007 (Valdizan et al. 2009) are indicated below the graph—solid lines: all dates at which broods
were observed, dotted portions: maximum possible brooding period length (end of brooding season) and the earliest possible 

onset of brooding (see ‘Results: females’)
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times less than in 2006−2007 (F = 2.39, n = 25, df = 24,
p < 0.001); no distinct variations of the developing
oocyte proportions throughout the sampling period
were observed (Fig. 3).

As was observed for the male gametes, despite
the low oogenesis found for 2000−2001, the mature
oocyte percentages observed during the oocyte

maturation period were similar to those found in
the same period for 2006−2007, with mean per -
centages (±95% CI) of 47.1% (±10.6) for 2000−2001
and 47.5% (±7.5) for 2006−2007. Multiple minor
de  creases in the mature oocyte percentages were
ob served for both sampling periods during the non-
brooding period, indicating that the bulk of the
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Fig. 4. Crepidula fornicata. Water temperatures (T) for both sampling periods: June 2000−early August 2001, and June
2006−early August 2007. Horizontal dotted line: minimal threshold required to activate the brooding process (10°C). Vertical
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Fig. 5. Chl a concentration from April 2000−August 2001, and April 2006−August 2007 (2006−2007 brooding periods data from
Valdizan et al. 2009). Data for late September and November 2006 not available. Horizontal dotted line: concentrations clearly 
separating low (<5 µg l−1) from elevated (>5 µg l−1) chl a values. Brooding periods are indicated below the graph (description

see Fig. 3)
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mature oocytes had been transferred to the uterus
during the non-brooding period (Fig. 3; Beninger et
al. 2010a,b).

Periods of brood presence were markedly shorter
in 2000−2001 (late March to late July) than in
2006−2007 (mid-February to late October; Figs. 3, 4 &
5). As brood presence was recorded every ~2 wk, it
was not possible to determine the exact date of initi-
ation or termination of brooding. Figs. 3, 4 & 5 there-
fore show the dates at which broods were actually
observed, and dotted lines indicate the earliest possi-
ble date of brooding based on the observation of the
previous sampling date, and the latest date of brood
presence based on the observation of the following
observation date. 

Environmental variations

Historical variations in water temperature and chl a

Calculated historical annual and warmest-month
mean water temperatures are presented for Bourg -
neuf Bay from 1970 to 2007 (Fig. 6A). Also shown for
each of the years during this time period is the date
from which the water temperature threshold neces-
sary to activate brooding in Crepidula fornicata was
attained (10°C; Werner 1948, Chipperfield 1951,
Thieltges et al. 2004, Richard et al. 2006) (Fig. 6B).

Fig. 6A shows a significant warming of annual
mean water temperatures (r2 = 0.639, p < 0.001) and
of warmest month water temperatures from 1970 to
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2007 (r2 = 0.485, p < 0.001). Indeed, in the period
1970−1994, only 8/26 (30.8%) of the annual mean
water temperatures were >13.5°C, whereas from
1995 to 2007, 12/13 (92%) of the annual mean water
temperatures were above this value. Similarly, in
1970−1994, only 8/26 (30.8%) of the warmest month
temperatures were >17.5°C, while in 1995−2007,
11/13 (84%) were above this value.

Fig. 6B shows that in 1970−1985, the period at
which water temperature attained the 10°C brooding
activation threshold was in the month of March in
only 6/16 years (37%), whereas in 1986−2008, this
temperature was attained in the month of March or
February in 19/22 years (86%).

Although there was a statistically-significant in -
crease of the chl a concentrations from 1996 to 2007 (F
= 2.06, n = 12, df = 11, p = 0.024), examination of the
number of extreme peaks shows the progression of
this episodic phenomenon more clearly (Fig. 7). In-
deed, in 1996−2001, only 5.55% of the chl a concen-
trations were >5 µg l−1, whereas in 2002−2007, 12.5%
of the chl a concentrations were above this value. Fur-
thermore, in the 6 years of 2002−2007, there were 10
elevated values (>5 µg l−1) versus 5 elevated values in
the 6 years of 1996−2001.

Influence of temperature and chl a on the 
reproductive cycle of Crepidula fornicata

Less favourable temperature conditions were found
for 2000−2001, coinciding with the low gametogene-
sis observed for these dates, compared to 2006–2007
gametogenesis (see ‘Results: male’ and ‘Results:
female’). Temperatures (Fig. 4) for this period were

significantly lower than for 2006−2007 (t-test: t = −2.3,
n = 29, df = 28, p = 0.029), with respective annual
means (±95% CI) of 14.5 (±1.4) and 15.7°C (±1.5).

Both in 2000−2001 and in 2006−2007, the initiation
of Crepidula fornicata brooding coincided precisely
with fluctuations of this environmental variable
(Fig. 4). First appearance of incubated broods in 2001
and 2007 began when water temperature reached
the minimum threshold of 10°C (Fig. 4). 

Chl a values were much higher in 2007 compared
to 2001 (Mann−Whitney test: U = 8.2, n = 45, df = 44,
p = 0.028; Fig. 5). As was the case for the temperature
data, this corresponded to a greater intensity of ga-
metogenesis in 2006−2007 (see ‘Results: male’ and
‘Results: female’). Slightly higher values of chl a were
observed in early spring 2007 (0.79–1.97 µg l–1) com-
pared to 2001 (0.89–1.19 µg l–1), at the same time as
water temperature ex ceeded the 10°C threshold, and
coinciding with the 1-mo earlier initiation of brooding
in 2007. Furthermore, more abundant food was avail-
able in 2007, with 3 peaks of chl a above a concentra-
tion of 5 µg l−1 observed from the end of spring until
summer (April, June, late July) whereas no chl a values
>5 µg l−1 were observed during this period in 2001.

DISCUSSION

Reproductive cycles

The results of the present study demonstrate that
although the same basic chronological pattern of
reproductive activity was observed in both 2000−
2001 and 2006−2007 in the Bourgneuf Bay Crepidula
fornicata population, important differences in dura-
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tion and intensity of gametogenesis and oviposition
are evident. These differences are (1)  earlier initia-
tion, and possibly later termination of brooding
period in 2006−2007 compared to 2000− 2001, and (2)
greater intensity of reproductive activity in 2006−
2007 compared to 2000−2001.

Extended periods of brood presence

The period of brood presence was longer in
2006−2007 than in 2000−2001; consequently, the re-
lease of larvae to the water column and subsequent
benthic recruitment was possible for a much longer
period in 2006−2007. Given the spatial and trophic
competition between cultured/feral cupped oysters
Crassostrea gigas and Crepidula fornicata in this bay
and elsewhere along the European coast (Blanchard
1997, Barillé et al. 2006, Beninger et al. 2007, Decot-
tignies et al. 2007a,b, Blanchard et al. 2008), this ex-
tended brooding period could be particularly impor-
tant. Normal C. gigas spawning in Bourgneuf Bay
occurs from May to July (Dutertre et al. 2009, 2010), so
the appearance of C. fornicata larvae as early as Feb-
ruary would permit the benthic recruitment of this
species well in advance of C. gigas (which spawned in
May of both 2005 and 2006, Dutertre et al. 2009), and
may be a factor in the recent proliferation of C. forni-
cata in habitats where it competes with C. gigas.

The extension of brooding to October in 2006 com-
pared to July in 2000, also underscores the increased
length of brooding period in 2006−2007. It also
enables benthic recruitment to continue after the
heavy mortalities that typically occur in naturally-
recruiting Crassostrea gigas populations (Mackin
1961, His & Robert 1985, His & Seaman 1992, Dégre-
mont et al. 2007, Dutertre et al. 2010), again enhanc-
ing the competitive position of Crepidula fornicata.

Greater intensity of reproductive activity

The various phases of Crepidula fornicata gameto-
genesis were markedly more intense in 2006−2007,
resulting in a gamete production (for males and
females) twice as high compared to 2000−2001. It
may be argued that the gamete residence time in the
tubules differed between the years; however, the
breeding period was initiated earlier in 2006−2007
than in 2000−2001, so if a shorter gamete residence
time did exist for one of the 2 time periods, it would
probably be for 2006−2007, and not 2000−2001. The
fact that more gametes were observed in the tubules

in 2006−2007 belies this possibility, so our interpreta-
tion appears valid.

The increased fecundity in 2006−2007 probably
translated to greater larval numbers and benthic
recruitment than compared to 2000−2001. The com-
bined effect of both an extended brooding season
and increased propagule numbers may be expected
to accentuate the proliferation of Crepidula fornicata
in Bourgneuf Bay, and by the same token, provide a
competitive advantage to this species with respect to
the co-occurring Crassostrea gigas.

It has been suggested that control of molluscan
recruit numbers is essentially top-down and inde-
pendent of recruit input (Menge 2000, Severns 2007).
However, several factors may attenuate this para-
digm, especially in the case of invasive Crepidula for-
nicata. First, there is the possibility of swamping
potential predators with recruiting animals (e.g.
Hollebone & Hay 2007), such that many of the excess
recruits will survive and hence contribute to prolifer-
ation. Second, the availability of predators may be a
determining factor. Previous mudflat studies have
implicated mainly decapod crustaceans in predation
on juveniles (and these were juvenile bivalves;
Beukema et al. 1998, Seitz & Lipcius 2001), whereas
at our study site, no evidence of such predators was
observed (no live individuals, and only very few
empty carapaces). The alternative mudflat predators,
shorebirds, may exert relatively low predation pres-
sure due to issues of timing and duration (migration
stopovers), and, something that may greatly influ-
ence bird predation on juveniles but is often over-
looked: international differences in hunting regula-
tions. Shorebirds are hunted in France, producing
very skittish assemblages on the mudflats, and may
spend much less time foraging than they do in coun-
tries where hunting is forbidden.

Finally, there is the particular case of Crepidula
fornicata. Some studies have suggested that the
indigenous submarine potential predators do not
seem to have learned either (1) that C. fornicata is a
potential food source, or (2) how to prey upon it
(Coum 1979, Blanchard 1995, 1997, Sax & Brown
2000); thus, top-down control for this particular spe-
cies in the invaded habitat seems unlikely.

Influence of water temperature and chl a on 
reproductive cycle

Temperature is considered the single most impor-
tant factor in controlling reproduction in opistho-
branch gastropods (Hadfield & Switzer-Dunlap 1984).
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The higher water temperatures and chl a values at
the study site in 2006−2007 compared to 2000−2001
coincided with a greater intensity of gametogenesis
in Crepidula fornicata. In addition, for both sampling
periods, C. fornicata brooding started when the 10°C
threshold was reached, as has been observed in
 previous studies (Werner 1948, Chipperfield 1951,
Thieltges et al. 2004, Richard et al. 2006). This value
probably reflects the minimal water temperature
required for larval survival and development in the
water column (Estrella Klinzing & Pechenik 2000,
Zhao et al. 2003). The warmer water temperatures in
late winter−early spring of 2007, compared to 2001,
allowed this threshold to be attained 1 mo earlier in
2007.

The historical chl a data show that elevated values
are much more frequent after 2001 than before that
year. This time frame corresponds to the most ele-
vated mean annual temperature values, suggesting
that elevated chl a values are related to elevated
temperature values. While availability of food is
undoubtedly important to reproduction (Hadfield &
Switzer-Dunlap 1984), the results of the present
study show that the shift in initiation of brooding
could not be imputed to the chl a values alone, since
even higher values were found at periods prior to ini-
tiation of brooding. Water temperature therefore
appears to be a determining factor in the initiation of
brooding in Crepidula fornicata, while the intensity
of gametogenesis may be related to food availability.

Although the initiation of oviposition appears to be
dependant on water temperature, this variable does
not appear to affect the termination of oviposition,
which happened in late July 2000 compared to late
October in 2006. Termination of incubation is there-
fore probably controlled by the availability of fertil-
ized oocytes and, ultimately, of energy stores ac -
quired from feeding.

The highly significant water temperature elevation
between 1970 and 2007, and especially 1995 to 2007
(ter Hofstede et al. 2010, present study) coincides
with the accelerating increase in slipper limpet pres-
ence over the same period (Héral et al. 1995). This
temperature increase appears to have allowed the
activation of brooding earlier in the season, espe-
cially after 1989, when the 10°C brooding activation
threshold was attained 1 to 3 mo earlier than before
1989. As noted previously (Beninger et al. 2010a,b),
earlier brooding would allow Crepidula fornicata lar-
vae to recruit much earlier than an important com-
petitor in this bay, Crassostrea gigas. The C. fornicata
larvae might thus suffer reduced mortality prior to
benthic recruitment, and as juveniles, enjoy a com-

petitive advantage over the later-recruiting oysters.
Previous studies have identified trophic competition
between the larvae of these 2 species (Blanchard et
al. 2008), and our work in progress indicates that the
competition for food resources in the adults of these 2
species (Decottignies et al. 2007a,b) is mirrored in the
juvenile stages (Decottignies et al. unpubl. data). 

Global warming is expected to continue for
decades in the mid- and high latitudes of the North-
ern hemisphere (Schneider 2001, Hawkins et al.
2003), so it is likely that this warming will enhance
the reproductive success of Crepidula fornicata in
Bourgneuf Bay, and probably over its European
range, in the years to come. Indeed, on southern
coasts of Chile where water temperatures are
already always above the 10°C threshold (Velasco &
Navarro 2005), C. fecunda, which has the same
reproductive and developmental characteristics as C.
fornicata, appears to brood almost year-round (Chap-
arro et al. 2005). Furthermore, the warming of coastal
waters can enhance invasions by permitting the col-
onization of invasive species previously restricted to
lower latitudes (Carlton 2000). In the Wadden Sea,
Northern Europe, the population of C. fornicata, once
poorly established, has recently increased contempo-
raneously with coastal water temperatures and the
decrease in winter severity (Thieltges et al. 2004,
Nehls et al. 2006). Warming coastal waters may also
provide increased pulses of particulate organic mat-
ter, as observed in the present study, allowing the
assimilated energy to be directed toward increased
reproduction. Invasive animal species are more
likely to be generalists than specialists, indirectly
facilitating adaptation to new climates (Rejmánek &
Richardson 1996). Indeed, C. fornicata shows many
generalist characteristics: a pelagic larval stage that
enables dispersion and colonization of new habitats
(Blanchard 1997, Collin 2003, Dupont et al. 2006), a
large tolerance to a wide range of environmental
variables (e.g. temperature, salinity, turbidity, sub-
strates; Coum 1979); and generalist suspension-feed-
ing larval and adult stages able to thrive under many
different dietary conditions (Barillé et al. 2006,
Beninger et al. 2007, Decottignies et al. 2007a,b,
Blanchard et al. 2008). Global warming of coastal
water temperatures will probably favour C. fornicata
and its attendant ecological impacts in Bourgneuf
Bay and all along the Atlantic European coasts,
including competitive interactions with native spe-
cies (e.g. oysters, mussels, scallops), ecosystem
effects (e.g. modification of the nature and structure
of the bottom) and economic effects (e.g. shellfish
culture and dredge fisheries; Hellmann et al. 2008).
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Furthermore, global warming could work together
with other stressors (e.g. habitat alteration, pollution;
Rogers & McCarty 2000) to reduce populations of
endemic species, while increasing populations of C.
fornicata, already abundant in Bourgneuf Bay (Bar-
illé & Barillé 2003, Sauriau et al. 2006) and many
other European coastal habitats (Hamon & Blanchard
1994, Blanchard & Ehrhold 1999, Richard et al. 2006,
FitzGerald 2007).

Strength of data

Data from 2 time intervals were reported in the
present study. We therefore compare 2 sample sets,
2000−2001 and 2006−2007, with 50 data points for
each month of each period. Furthermore, the two-
pronged approach used here reinforces the strength
of the data: (1) We are unaware of any other marine
gastropod studies that have looked at the stability of
reproductive cycles over such large time intervals.
We therefore believe the data presented is the most
convincing to date, allowing us to conclude that
reproduction has been positively affected over the
time interval. (2) With respect to concluding that the
changes in reproductive intensity, precocity, and
duration were probably due to temperature and chl a
effects, we use the proven minimum threshold tem-
perature to initiate brooding (Werner 1948, Chipper-
field 1951, Thieltges et al. 2004, Richard et al. 2006),
field-validated in the 2001 and 2007 early spring
periods, and historical temperature data, to show that
early initiation of brooding has been possible since
1989, and that this effectively corresponds to the
increasing proliferation of Crepidula fornicata in
Bourgneuf Bay. We believe this argument substantial
enough to at least underscore the relationship and
constitute evidence for a temperature effect. Given
the total lack of any similar data for any other loca-
tion, this study should serve as a starting point for fur-
ther investigations into the biological bases of the C.
fornicata expansion and proliferation on the Euro-
pean Atlantic coast.
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